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An analytical approximate solution of the Takagi±Taupin equations for a

symmetrical three-beam Laue±Laue case in a perfect non-absorbing semi-

in®nite crystal slab has been obtained. The expression, a second-order

expansion, is valid for situations where the effective crystal thickness does not

exceed half the actual extinction length and it is shown to be in perfect

agreement with the full numerical solution of the fundamental equations.

1. Introduction

Three-beam diffraction has now become a well established

tool in the physical estimation of structure-invariant triplet

phases, see for instance the review by Weckert & HuÈ mmer

(1997). In order to describe the perturbation of the two-beam

intensity owing to the gradual excitation of a third lattice node

onto the Ewald sphere, the dynamical theory of X-ray

diffraction must be used. Up to now, two approaches to the

problem have been proposed. The ®rst applies the concepts of

Ewald±von Laue fundamental theory (Ewald, 1917; von Laue,

1931), in many cases simpli®ed using the Bethe approximation

(Juretschke, 1982a,b; Hùier & Marthinsen, 1983; Juretschke,

1984; HuÈ mmer & Billy, 1986; Chang et al., 1999), or a second-

order Born approximation (Chang & Tang, 1988; Chang et al.,

1989; Shen, 1998; Stetsko et al., 2000). However, numerical

solutions of the fundamental equations eigenvalue problem

have also been successfully achieved (Colella, 1974; Chang,

1984; Weckert & HuÈ mmer, 1990; Stetsko & Chang, 1997;

Weckert & HuÈ mmer, 1997) and these are essential for evalu-

ating different approximation schemes. Common to all these

approaches is the underlying assumption of a semi-in®nite

plane-parallel perfect-crystal slab as the scattering system.

Another method of attacking the problem is based on the

Takagi±Taupin equations (Takagi, 1962, 1969; Taupin, 1964),

which naturally deals with crystals of ®nite size (Thorkildsen,

1987; Thorkildsen & Larsen, 1998; Larsen & Thorkildsen,

1998a). So far, solutions of these equations have been

obtained only for speci®c crystal geometries spanned by the

involved scattering vectors ± cf. Figs. 1 and 2 of Thorkildsen &

Larsen (1998). The solutions are analytical, expressed as series

expansions with a ®nite number of terms, which make them

especially attractive with regard to curve-®tting procedures

applied to experimentally measured three-beam pro®les. This

is important when phase assignments for many low-resolution

pro®les ± obtained for instance with the so-called `reference-

beam' method (Shen, 1998; Chang et al., 1999; Shen et al.,

2000) ± are to be carried out. The potential of extracting

additional information from such re®nements will be

discussed in a forthcoming paper. A disadvantage of the

series-expansion approach is related to its small radius of

convergence. In the present work, we present the ®rst

important terms in a series expansion of the solution of the

Takagi±Taupin equations for a semi-in®nite perfect-crystal

slab in a symmetrical three-beam transmission (Laue±Laue)

case. Furthermore, we demonstrate the equivalence with the

numerical solution of the fundamental equations for small

crystal thicknesses where it is justi®ed to neglect higher-order

terms. The three-beam case 2�20=0�22=20�2 in silicon is used as

our working example. The in¯uence of PendelloÈsung effects is

also brie¯y discussed.

2. Theory

The Takagi±Taupin equations for one state of polarization are

written in the representation

@ ~Do

@so

� i�oh
~Dh � i�og

~Dg

@ ~Dh

@sh

� i�ho
~Do � i�hg

~Dg

@ ~Dg

@sg

� i�go
~Do � i�gh

~Dh:

This implies that polarization coupling effects are not taken

into account in this work. Furthermore, neither ordinary

absorption nor resonant scattering effects are included, cf.

Larsen & Thorkildsen (1998a).
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The coordinate sp is along the wavevector Kp associated

with the diffracted beam p 2 fo; h; gg. h is regarded as the

primary reciprocal-lattice vector and g the secondary one. The

coupling coef®cient �pq, having dimension of inverse length, is

related to the structure factor by the relation

�pq � ��re=Vc�FpqCpq:

Here re is the classical electron radius, Vc is the volume of the

unit cell, � is the wavelength, Fpq is the structure factor

associated with the reciprocal-lattice node pÿ q and Cpq is the

actual polarization factor for � or � polarization.

The solution for the displacement ®eld associated with the

primary diffracted beam at the point P owing to a point source

at S, cf. Fig. 1, is

Dh�P S� � J ~Dh��o;�h;�g� exp�2�i�h�h� exp�2�i�g�g�
� ���o����h����g� �1�

with �p � sp�P� ÿ sp�S�. �h and �g are excitation errors

associated with the Kh and Kg beams, respectively. J � 1=V�0�s

is the Jacobian of the transformation from a Cartesian coor-

dinate system to the one de®ned by the triplet of unit vectors

�so; sh; sg�, sp being along Kp. The Heaviside unit step func-

tions, ���p�, ensure that the diffracted wave ®eld is zero

outside the Borrmann pyramid de®ned by the unit vectors sp

with origin at S, cf. equation (22) of Thorkildsen & Larsen

(1998). For our special case of symmetrical Laue±Laue

diffraction, V�0�s , which also corresponds to the volume

spanned by fspg, is given by

V�0�s � 2�31=2 cos � sin2 � � 3
2 31=2 cos  sin2 : �2�

The angles 2� and  are de®ned by ��sp; sq� � 2�pq � 2�,
��sp; n� � ; p; q 2 �o; h; g�. n is the inward drawn normal to

the entrance surface.

The displacement ®eld at P is obtained by summing the

contributions from all source points within the base abc of the

inverted Borrmann pyramid. This also de®nes the meaning of

a semi-in®nite crystal in the present context: No Borrmann

pyramid as drawn from any source point in the base should be

limited by the lateral boundaries of the crystal. The same

situation must be true for all exit points as seen by the

detector. The calculation is simpli®ed when expressed in an

orthonormal coordinate system �r0; r1; r2� with the associated

unit base vector r2 parallel to n. r0 is along the projection of sg

onto the exit surface B and r1 � r2 � r0. The origin of this

coordinate system is also located at the point P, cf. Fig. 2(a). In

Fig. 2(b), the actual ranges of integrations are indicated. We

have

Dh�P� � �so � n�
Rr0�a�

r0�c�
dr0�S�

Rr1y

r1x

dr1�S�Dh�P S�: �3�

It is convenient to introduce dimensionless coordinates by

rede®ning r0 and r1 according to r0 � r0t tan  and

Figure 2
(a) De®nition of a reference Cartesian coordinate system with the origin
at P on the exit surface B. (b) abc: area of in¯uence, i.e. region for source
points, S, on the entrance surface A, contributing to the displacement ®eld
at P.

Figure 1
Crystal shaped as a parallel slab of thickness t. A is the entrance surface, B
is the exit surface. The actual scattering volume, giving the displacement
®eld at the exit point P, is the inverted Borrmann pyramid abcP. The
origin of the �so; sh; sg� coordinate system is located at P. Actual wave
vectors Ko, Kh, Kg all form an angle  with the inward normal vector n. h,
g and hÿ g are reciprocal-lattice vectors of the primary, secondary and
coupling re¯ections, respectively. The de®nition of polarization vectors
are given in Fig. 2 of Weckert & HuÈ mmer (1997), with the � vectors all
lying in the �so; sh� plane.



r1 � r1�t=31=2� tan . We then have for the relative coordinates

f�pg
�o � ��=2��1� ro�S� ÿ r1�S��;
�h � ��=2��1� ro�S� � r1�S��;
�g � ��=2��1ÿ 2ro�S��;

where we have de®ned � by

� � 2t=�3 cos �:
The displacement ®eld of the primary diffracted beam is

written as a series expansion

~Dh��o;�h;�g� � D�e�o

P1
n�1

d
�n�
h ��o;�h;�g�:

D�e�o is the amplitude associated with the source point. The

actual terms, orders 1±3, are

d
�1�
h � ���g� � �1=����ro�S� ÿ 1

2�;
d
�2�
h � ÿ�i cos �� ÿ sin ���;

d
�3�
h � ÿ�o�hu���g� ÿ�ovÿ�hw:

Here, ÿ � ��re=Vc��jFhgjjFgoj=jFhoj��ChgCgo=Cho� and

�� � 'oh � 'hg � 'go, the phase of the triplet structure

invariant. Furthermore, u � �oh�ho, v � �og�go and w � �hg�gh.

We have

Dh�P� � cos �31=2=3��t tan �2

� R1=2

ÿ1

dr0�S�
Rr0�S��1

ÿr0�S�ÿ1

dr1�S�Dh�P S�: �4�

With the following de®nitions,

� � ���h;

� � ���g;

the intensity, Ih, of the primary diffracted beam, recorded at

the point P, is given by equation (25) of Thorkildsen & Larsen

(1998):

Ih�P� �
c

2"0

jDh�P�j2 �
c

2"0

f�<Dh�P��2 � �=Dh�P��2g;

which, expressed in the variables � and �, becomes to second

order

Ih��; �� / h�0���� � �ÿ cos ��h
�1�
1 ��; �� ÿ �ÿ sin ��h

�1�
2 ��; ��

� �2u

2

� �
h
�2�
1 ��� �

�2v

2

� �
h
�2�
2 ��; ��

� �2w

2

� �
h
�2�
3 ��; �� � �2ÿ2h

�2�
3 ��; ��: �5�

The functions fhg are given in Appendix A. The integrated

intensity of the primary diffracted beam becomes, using

�h � �sin 2�=���!,

I h��� �
Z

d�! Ih����!�; �� �
1

��

�

sin 2�

Z
d� Ih��; ��:

Finally, the integrated power

Ph � �sh � n�AI h���;
A being the area of the exit surface as seen by the detector, is

expressed by

Ph � P�0�h 1ÿ 1
3 �

2
oh ÿ 2

�hg�go

�ho

f2��g� cos �� � f1��g� sin ��

� ��
ÿ2 �2

go � �2
hg

ÿ �
f3��g� � 2

�2
hg�

2
go

�2
ho

f3��g�
�
: �6�

P�0�h is the kinematical integrated power and we have de®ned

�pq � �t=cos ���re=Vc�jFpqjCpq; �7�
�g � 3� � 2��t=cos ��g �8�

and the shape functions

f1��g� � �1ÿ cos �g�=�2
g; �9�

f2��g� � ��g ÿ sin �g�=�2
g; �10�

f3��g� � ��g ÿ sin �g�=�3
g: �11�

With �t� � mm, ��� � AÊ , �Vc� � AÊ 3, ��!� � �� � � 10ÿ3� and

�jhj� � �jgj� � AÊ ÿ1, the most important parameters are calcu-

lated according to

�pq � 0:2818�t�=�Vc cos ��jFpqjCpq;

� � 0:3655�cos �=cos �tjhj�!;
� � 0:3166tjgj� :

�! is the angular deviation from the Bragg condition for the

primary re¯ection, while � is the rotation angle for rotation

about h with � � 0 corresponding to the exact three-beam

point.

For the completely symmetrical case where fjFpqjg � jFj,
i.e. �pq � �0Cpq, we ®nd that the relative change of the inte-

grated power owing to three-beam effects becomes

�Ph

P�0�h

� ÿ2 �0

ChgCgo

Cho

f2��g� cos �� � f1��g� sin ��

� ��
� �2

0 �Cgo�2 � �Chg�2 ÿ
ChgCgo

Cho

� �2
" #

f3��g�
)
: �12�

3. Results and discussion

The key result of the analysis, equation (6), is very similar to

what has been obtained for a ®nite crystal geometry (Thor-

kildsen & Larsen, 1998). The main differences are related to

the shape functions, fi, emphasizing the different `weights' put

on the terms owing to the particular crystal and scattering

geometry. It is important to notice that the phase-carrying

terms are associated with the same shape functions in the ®nite

and semi-in®nite case.

In order to compare the results based on (12) with

numerical calculations based on the fundamental theory, the

symmetrical Laue±Laue case 2�20=0�22=20�2 in silicon was

chosen as a model system. The inward surface normal is

n � �1�1�1. The results presented are for the �-polarization state.

The parameters are: Vc � 160:18 AÊ 3, jFj � 68:711, � �
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1.000 AÊ , 2� � 30:188�,  � 17:499�, jhj � jgj � 0:52081 AÊ ÿ1

and �� � 0:0�. The polarization factors are calculated

according to Weckert & HuÈ mmer (1997) giving Coh � 0:86438

and Cog � Chg � ÿ0:96550.

The three-beam three-dimensional-intensity pro®le, as

calculated from (5), for a crystal plate of thickness 3:0 mm is

shown in Fig. 3. Numerical computations were carried out

following the procedure devised by Weckert & HuÈ mmer

(1997). In this case, the two-beam `background level' was

determined as the average of the integrated power calculated

at � � �0:1�. Notice that this will be the dynamically

integrated power level including primary-extinction effects,

while in (12) the kinematically integrated power is used for

scaling. When extinction is negligible, as in the cases studied,

this will make no difference in the ®nal result.

A comparison of the two approaches for the relative change

in the integrated power for crystal plates of various thick-

nesses is given in Fig. 4. It is seen that for a small plate

thickness the two approaches yield in practice identical results.

When t increases, however, the two-term series expansion is

no longer valid. This is clearly seen in Fig. 4(d), for a plate

thickness of 7 mm, where the perturbation of the pro®le

calculated from (12) far exceeds the corresponding result of

the numerical calculation. In this case, the �0 parameter is seen

to be above 0.8, indicating a situation of poor convergence.

Having a solution to the second order, f�g parameters should

be less than 0.4 in order to ensure valid solutions ± cf. the

discussion in Thorkildsen & Larsen (1998). Absorption,

which is not included in the present treatment, is negligible

for the plate thicknesses in question (=F000 � 1:128 and

�0 � 39:69 cmÿ1). The same is true for �ÿ� polarization

coupling as the actual scalar products of polarization vectors

are small (po � rg � ÿph � rg � ÿ0:11602). The inclusion of

such effects (and also of asymmetrical scattering situations)

would signi®cantly increase the complexity of the solutions

(Larsen & Thorkildsen, 1998a).

Figure 3
Three-beam three-dimensional intensity pro®le, � polarization, for the
case 2�20=0�22=20�2 in silicon. Crystal thickness t � 3 mm. The intensity, Ih,
is given in relative units. The angular variables �! and � are associated
with the orthogonal rotation axes !̂ and  ̂. A scan in �! away from the
three-beam situation, j� j � 0, gives the ordinary two-beam rocking
curve of the primary re¯ection.

Figure 4
Comparison of simulations based on the Takagi±Taupin formalism (red line) and the calculations from standard plane-wave formalism (blue line) for
four different plate thicknesses. Notice the different scales on abscissa and ordinate in the ®gures. Actual values of �0 are: �0 � 0:12675� t[mm]. All
®gures represent the �-polarization case. The rotation sense of the reciprocal-lattice point g is from inside to outside the Ewald sphere, i.e. � < 0
corresponds to the situation when g is inside the sphere.



The numerical calculations also clearly show the danger of

using Laue±Laue cases for phase estimations. If the effective

crystal thickness as experienced by each of the three beams,

t cos , is larger than the actual `extinction' lengths

�pq � 1=j�pqj � 9:5706 mm, PendelloÈsung effects will become

evident and strongly in¯uence the three-beam pro®les. An

example of this effect for the present three-beam case is

depicted in Fig. 5, where the asymmetry of the pro®le is

completely reserved for t � 20 mm. These features have

already been pointed out by Weckert & HuÈ mmer (1990, 1998).

Thus, to use Laue±Laue cases for phase estimations applying

the standard scheme of pro®les, cf. Fig. 6 of Weckert &

HuÈ mmer (1997), it is a prerequisite to work with effective

crystal thicknesses below one extinction length, leaving us

with situations where (6) gives an approximative correct

representation of the three-beam perturbation. For thicker

crystals, the interpretation becomes much more complicated

and may even be untractable.

For a comparison with a real experiment, all theoretical

pro®les presented have to be convoluted with an experimental

resolution function.

4. Concluding remarks

The range of applicability of three-beam diffraction now

seems to be divided into two areas. One is concerned with the

need for rapid phase assignments for several instantaneous

measured pro®les, the other with highly resolved pro®les

probing the sensitivity with regard to various small structural

changes. In both cases, the need for well founded analytical

solutions is evident. In the former case, phase re®nements

based on experimentally obtained pro®les are pending on a

robust and simple, but physically correct, analytical model. In

the latter case, the overall effects of different inherent physical

parameters on the scattering processes could be better

predicted, analyzed and con®rmed based on analytical solu-

tions.

The Takagi±Taupin approach has proven successful in this

respect. It is capable of handling various crystal shapes and

even semi-in®nite plates, as shown in the present work. The

complementarity with the fundamental theory in a three-beam

case, demonstrated for the ®rst time here, shows its generality

and potential as a possible `all-round tool' for analyzing cases

when the above simplifying assumptions are ful®lled. In

addition, the possibility of formally including crystal imper-

fection (Larsen & Thorkildsen, 1998b) should also be kept in

mind.

APPENDIX A
A1. Function definitions

The 2D shape functions, expressed in the dimensionless

variables � and �, which occur in the de®nition of the full 3D

intensity three-beam pro®le are given by:

Acta Cryst. (2001). A57, 389±394 Thorkildsen et al. � Takagi±Taupin equations 393

research papers

Figure 5
(a) Integrated two-beam re¯ectivity R�

h (relative scale) showing the PendelloÈsung effect. (b), (c) Calculated three-beam pro®les from the fundamental
theory for t � 10 and t � 20 mm, respectively, showing the change in shape that might lead to misinterpretation of the value of the triplet phase structure
invariant. All ®gures represent the �-polarization case.
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h�0���� � 4 sin2�3�=2�
�2

� 2�1ÿ cos 3��
�2

h
�1�
1 ��; �� �

ÿ
2 sin�3�=2�f� sin��3�=2���ÿ 2���
ÿ ��ÿ 2�� sin�3�=2�g�=��2��ÿ ����

h
�1�
2 ��; �� �

ÿ sin�3�� � sin�3��ÿ ��� � sin�3��
���ÿ ���

h
�2�
1 ��� �

4 cos�3�� � 6� sin�3�� ÿ 4

�4

h
�2�
2 ��; �� � 2 sin�32 ��f�2 sin�32 ��ÿ 2���

� 3���ÿ ��� cos�32 ��
ÿ ��2 ÿ 2�2� sin�32 ��g=��3��ÿ ���2�

h
�2�
3 ��; �� � 2 sin�32 ��fÿ�2 sin�32 ��ÿ 2���

� 3���ÿ ��� cos�32 ��
� ��2 ÿ 4��� 2�2� sin�32��g=��3��ÿ ��2��

h
�2�
4 ��; �� � f�2 ÿ ��ÿ � cos�3��ÿ ����

� ��ÿ �� cos�3���
� �2 � ��ÿ ��� cos�3��g=�2�2��ÿ ��2�2�:
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